
Tetrahedron Letters 48 (2007) 6189–6191
Asymmetric enamide hydrogenation using planar-chiral cyrhetrenes
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Abstract—The catalytic asymmetric hydrogenation of a-arylenamides using catalysts prepared in situ from [Rh(cod)2]BF4 and
cyrhetrenyldiphosphines was effective with a range of enamides. The corresponding acetamides were obtained with up to 93% ee.
� 2007 Elsevier Ltd. All rights reserved.
Asymmetric hydrogenations catalyzed by transition
metals continue to find widespread applications not only
in academia but also in industry.1,2 Considerable efforts
have been devoted to the development of new, effective
ligands, since enantioselective hydrogenation reactions
are highly atom economic and give products which are
important building blocks for the synthesis of biologi-
cally active compounds.

As part of our continuing studies of cyrhetrene-contain-
ing ligands for asymmetric catalysis,3 we recently
reported the synthesis of novel planar-chiral phosphines
1 (AaPhos-type), 2 and 3 bearing cyrhetrene backbones
(Fig. 1).4 Their palladium(II) and rhodium(I) complexes
are highly effective catalysts for asymmetric allylic alkyl-
ation, the hydrogenation of various olefins and the
Hayashi-Miyaura reaction. Herein, we describe the
application of cyrhetrenes 1 in the rhodium-catalyzed
asymmetric hydrogenation of a-arylenamides.5

Cyrhetrenes 1 were synthesized in a five-step procedure
from acetylcyrhetrene (4) as reported earlier (Scheme
1).4,6
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Figure 1. Planar-chiral cyrhetrenyl phosphines.
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An initial screening with N-(1-phenylvinyl)acetamide
(6a) as substrate revealed that the optimal conditions
involved a catalyst formed in situ from 1 mol % of
[Rh(cod)2]BF4 and 1.1 mol % of diphosphine 1, ethyl
acetate as solvent and a hydrogen pressure of 10 bar
(Scheme 2). Use of bis(diphenylphosphino)-substituted
cyrethrene 1b led to the most enantioselective catalyst
affording 7a with 93% ee at room temperature (Table
1, entry 1).5,7

In order to examine the substrate scope, conversions of
several substituted a-arylenamides8 were investigated
using [Rh(cod)2]BF4 and cyrhetrene 1b as catalyst sys-
tem in ethyl acetate at room temperature.9 Enamides
6b–e bearing either electron withdrawing substituents
or electron donating ones on the aromatic ring were
reduced to the corresponding acetamides 7b–e having
85–91% ee within 24 h (Table 1, entries 2–5). Generally,
a hydrogen pressure of 10 bar was applied and only in
the case of (4-methoxyphenyl)enamide (6d) a pressure
of 20 bar was necessary to achieve full conversion.
ortho-Substitution on the aromatic ring slowed down
the reaction significantly,10 presumably due to steric
congestion. Application of (2-bromophenyl)enamide
(6f) in the hydrogenation reaction at a hydrogen pres-
sure of 50 bar led to only 20% conversion, furnishing
product 7f with low ee (entry 6). Additional substitution
on the olefin moiety was tolerated, although an in-
creased hydrogen pressure was necessary in these cases
as well. Both enamides 6g and 6h were applied as a mix-
ture of E/Z-isomers in a 2:1 ratio. (4-Methylphenyl)ena-
mide (6g) was hydrogenated to the corresponding
acetamide 7g with high enantioselectivity (91% ee; entry
7). In contrast, acetamide 7h was isolated with only 68%
ee (entry 8). It is known that some catalyst systems
hydrogenate isomeric mixtures of E/Z-enamides with
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Scheme 1. Synthesis of diphosphines 1.
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Scheme 2. Asymmetric hydrogenation of a-arylenamide 6a.
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Scheme 3. Additional enamides examined in the asymmetric hydro-
genation reaction.
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high enantioselectivity, while others are sensitive to the
configuration of the double bond.11,12 The current sys-
tem appears to be substrate dependent in this respect.

Additionally, the aliphatic enamide 6i and the cyclic
enamide 6j were subjected to the hydrogenation (Scheme
3). Unfortunately, in both cases the enantioselectivity
was low and the conversion was incomplete, even at
20 and 50 bar of hydrogen pressure, respectively. While
in the former case steric bulk probably inhibited proper
coordination of the substrate and therefore led to lower
turnover, in the latter case the E-configured double
bond of enamide 6i might be the cause of the observed
lack of enantioselectivity.14

In conclusion, AaPhos derivatives 1a–d have been suc-
cessfully applied in the rhodium-catalyzed asymmetric
hydrogenation of various a-arylenamides 6, which
provided the corresponding acetamides 7 with up to
93% ee. Furthermore, b-substituted a-arylenamides
Table 1. Substrate scope of the asymmetric hydrogenation of a-arylenamide

[Rh(cod)2]BF4 (1
cyrhetrene 1b (1NHMe

O

6a−h 

R

R'

H2, EtOAc

Entry R R0 Time (h) p(H2) (

1 H H 16 10
2 H 4-Cl 22 10
3 H 4-CF3 24 10
4 H 4-MeO 20 20
5 H 4-Me 22 10
6 H 2-Br 72 50
7c Me 4-Me 20 20
8c Me H 22 20

a The enantiomeric ratios were determined by HPLC using a chiral stationa
b Absolute configurations of the products were either assigned by compari

assumption of an identical reaction pathway.
c An isomeric mixture of the enamide (E/Z 2:1) was employed.
could be applied, which expands the utility of the
methodology. However, in some cases a Z-configured
double bond seems to be necessary for high
enantioselectivity.
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